TABLE OF CONTENTS

- PARTICLE CONSERVATION OF MASS (PARTICLE DIFFUSIVITY)
- GAS STREAM CONSERVATION OF MASS
- GAS-ADSORBENT CONSERVATION OF ENERGY
- VESSEL CONSERVATION OF ENERGY
- GAS CONCENTRATION OF MOMENTUM
- NOMENCLATURE

PARTICLE CONSERVATION OF MASS (PARTICLE DIFFUSIVITY)

GOVERNING EQUATION

\[\frac{\partial q}{\partial t} + \varepsilon_p \frac{\partial c}{\partial t} = D_{\text{eff}} \frac{\partial}{\partial r} \left(\frac{\partial c}{\partial r} \right) \]

ASSUMPTIONS

- Gas phase storage term is negligible
- \(D_{\text{eff}}\) is constant through particle
- \(D_{\text{eff}}\) is independent of loading

INITIAL CONDITIONS

\[c(r, 0) = c_{\text{initial}} \]
\[q(r, 0) = q_{\text{initial}} \]

BOUNDARY CONDITIONS

\[\left(\frac{\partial c}{\partial r} \right)_{r=0} = 0 \]
\[\left(D_{\text{eff}} \frac{\partial c}{\partial r} \right)_{r=R_i} = -K_j \left(c_B - c_R \right) \]

CONSTITUTIVE RELATIONS

- Desiccant Capacity

\[q = q(c, T) \]
• Mass Transfer Film Coefficient

Sherwood Number

\[Sh = \frac{2K_f R_s}{D_m} = 2.0 + 0.6 \text{Re}^{0.5} \text{Sc}^{0.33} \]

Reynold Number

\[\text{Re} = \frac{\rho_f V 2R_s}{\mu} \]

Schmidt Number

\[\text{Sc} = \frac{\mu}{\rho_f D_m} \]

• Ideal Gas Law

\[\rho = \frac{P_v}{R_T T} \]

• Effective Diffusivity

\[D_{eff} = \frac{D_p}{\tau} = \frac{\epsilon_p D_m}{\tau} \]

where

\[D_m = D_{m,o} \left(\frac{P_o}{P} \right) \left(\frac{T}{T_o} \right)^{1.5} \]

GAS STREAM CONSERVATION OF MASS

GOVERNING EQUATION

\[-\varepsilon D_e \frac{\partial^2 c}{\partial Z^2} + \frac{\partial}{\partial Z} \left(\nu c \right) + \varepsilon \frac{\partial c}{\partial t} + (1 - \varepsilon) \frac{\partial q}{\partial t} = 0 \]
ASSUMPTIONS

- Gas phase storage is neglected - \(\frac{\partial c}{\partial t} = 0 \)
- One dimensional – no gradients in radial direction
- Plug flow is assumed – \(D_L = 0 \)

INITIAL CONDITIONS

\[c (Z, 0) = c_{initial} \]
\[\bar{q} (Z, 0) = \bar{q}_{initial} \]

BOUNDARY CONDITIONS

\[c (0, t) = c_{inlet} \]
\[V (0, t) = V_{inlet} \]

CONSTITUTIVE RELATIONS

- Superficial Velocity
 \[V = \frac{Flow_{std} \, \sigma_{std}}{c_{gas} \, A_c} \]

- Gas Concentration
 \[c_{gas} = \frac{(P_T - P_v)}{R_{gas} \, T} \]

- Average Loading
 \[(1 - \varepsilon) \frac{\partial \bar{q}}{\partial t} = a \, k_f \, (c_b - c_k) \]

GAS-ADSORBENT CONSERVATION OF ENERGY

GOVERNING EQUATION

\[-\varepsilon \, K \, \frac{\partial^2 T_f}{\partial Z^2} + V \rho_f C_{p,f} \frac{\partial T_f}{\partial Z} + (1 - \varepsilon) \rho_s C_{p,s} \frac{\partial T_s}{\partial t} \]
\[= -(1 - \varepsilon) \Delta H \frac{\partial \bar{q}}{\partial t} - \frac{4 h_v}{d_i} (T_f - T_v) \]
ASSUMPTIONS

- Conduction heat transfer is neglected
- Energy storage term in gas phase is neglected
- Thermal equilibrium between fluid and solid is assumed, i.e. $T_f(Z) = T_s(Z)$
- No radial temperature gradient in sorbent bed

INITIAL CONDITIONS

$$T_f(Z, 0) = T_s(Z, 0) = T_{\text{initial}}$$
$$\bar{q}(Z, 0) = \bar{q}_{\text{initial}}$$

BOUNDARY CONDITIONS

$$T(0, t) = T_{\text{inlet}}$$
$$V(0, t) = V_{\text{inlet}}$$

CONSTITUTIVE RELATIONS

- Film heat transfer coefficient to vessel

 \[\text{Nusselt Number} \]
 \[Nu = \frac{2h_f R_s}{K_f} = 2.0 + 0.369 \text{Re}^{0.64} \text{Pr}^{0.33} \]

 \[\text{Reynold Number} \]
 \[\text{Re} = \frac{\rho_f V 2R_s}{\mu} \]

 \[\text{Prantl Number} \]
 \[\text{Pr} = \frac{C_{p,f} \mu}{K_f} \]
VESSEL CONSERVATION OF ENERGY

GOVERNING EQUATION

\[\pi d_i h_v (T - T_v) = \frac{\pi}{4} \left(d_o^2 - d_i^2 \right) \rho_v C_v \frac{dT_v}{dt} + \frac{\pi d_o}{R_d} (T_v - T_{amb}) \]

ASSUMPTIONS

• No radial temperature gradient through vessel
• No axial conduction through vessel

INITIAL CONDITIONS

\[T_v (Z, 0) = T_{v, initial} \]

BOUNDARY CONDITIONS

\[T_{amb} (t) = T_{amb} \]

CONSTITUTIVE RELATIONS – none

GAS CONSERVATION OF MOMENTUM

GOVERNING EQUATION

\[\frac{\partial P}{\partial Z} = f \left(\frac{\sigma V^2}{2R_s} \right) \]

ASSUMPTIONS – none

INITIAL CONDITIONS – none

BOUNDARY CONDITIONS

\[P(0, t) = P_{inlet} \]

CONSTITUTIVE RELATION

• Ergun friction factor

\[f = \left(\frac{1 - \varepsilon}{\varepsilon^3} \right) \left[\frac{150(1 - \varepsilon)}{Re} + 1.75 \right] \]
NOMENCLATURE

- a – sorbent external surface area [ft2/ft3]
- A_c – Bed cross sectional area [ft2]
- c – gas phase concentration [lb$_{H2O}$/ft3]
- c_B – gas phase concentration in bulk stream [lb$_{H2O}$/ft3]
- c_{gas} – concentration of gas (density) [lb/ft3]
- $c_{initial}$ – initial gas phase concentration [lb$_{H2O}$/ft3]
- c_{inlet} – gas phase concentration at bed inlet [lb$_{H2O}$/ft3]
- $C_{P,f}$ – fluid specific heat [Btu/lb-R]
- $C_{P,s}$ – sorbent specific heat [Btu/lb-R]
- C_v – vessel specific heat [Btu/lb-R]
- c_R – gas phase concentration at sorbent particle surface [lb$_{H2O}$/ft3]
- D_{eff} – effective diffusivity through adsorbent particle [ft2/min]
- d_i – vessel inside diameter [ft]
- D_L – axial dispersion coefficient – [ft2/min]
- D_m – molecular diffusivity [ft2/min]
- $D_{m,o}$ – molecular diffusivity at standard temperature and pressure [ft2/min]
- d_o – vessel outside diameter [ft]
- D_p – sorbate pore diffusivity [ft2/min]
- $Flow_{std}$ – flow referenced to standard temperature and pressure [scfm]
- K – thermal conductivity of sorbent bed [Btu/min-ft-R]
- K_f – external fluid film mass transfer coefficient [ft/min]
- h_v – film coefficient to vessel [Btu/min-ft2-R]
- P – pressure [lb/ft2]
- P_{inlet} – pressure at bed inlet [lb/ft2]
- P_o – standard pressure [lb/ft2]
- P_T – total gas pressure [lb/ft2]
- P_v – sorbate vapor pressure [lb/ft2]
- q – solid phase concentration [lb$_{H2O}$/ft3]
- $q_{average}$ – average solid phase concentration [lb$_{H2O}$/ft3]
- $q_{initial}$ – initial solid phase concentration [lb$_{H2O}$/ft3]
- $q_{initial}$ – average initial solid phase concentration [lb$_{H2O}$/ft3]
- r – radial coordinate for adsorbent [ft]
- R_a – resistance to ambient heat loss from vessel [min-ft2-R/Btu]
- R_{gas} – gas constant of bulk gas [ft-lb/lb$_m$-R]
- R_s – adsorbent particle radius [ft]
- R_v – gas constant of sorbate [ft-lb/lb$_m$-R]
- t – time [min]
- T – temperature [R]
- T_{amb} – ambient temperature [R]
- T_f – fluid temperature [R]
- T_{inlet} – temperature of inlet fluid [R]
• T_o – standard temperature [R]
• T_s – sorbent temperature [R]
• T_v – vessel temperature [R]
• $T_{v,initial}$ – initial vessel temperature [R]
• V – superficial velocity [ft/min]
• V_{inlet} – superficial velocity at bed inlet [ft/min]
• Z – axial coordinate [ft]
• ΔH – heat of adsorption [Btu/lb]
• ε - voidage of sorbent bed [ft3/ft3]
• ε_p – porosity of adsorbent particle [ft3/ft3]
• ρ_f – fluid density [lb/ft3]
• ρ_s – sorbent density [lb/ft3]
• ρ_{std} – fluid density at standard pressure and temperature [lb/scf]
• ρ_v – vessel density [lb/ft3]
• τ - tortuosity [ft/ft]
• μ - viscosity [lbm/ft-min]